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In this paper the conditions for the existence of self-similar solutions of the equations 
governing unsteady flows through a porous medium are presented and discussed. The 
first two sections deal with the case of non-Newtonian fluids of power-law behavior; the 
third section analyzes the case of non- Darcy gas flows. The boundary and initial conditions 
occurring currently in a large class of fluid mechanics problems, of practical interest in 
engineering, are considered. 

Keyword$: unsteady flow through porous media; non-Newtonian fluids; non-Darcy gas 
flow; self-similar solutions 

I n t r o d u c t i o n  

The flow through a porous medium is a topic of special interest 
in many applications of engineering science. Recently, with the 
increasing interest in the production of heavy and waxy crude 
oils, it has become essential to have an adequate understanding 
of the rheological effects of these non-Newtonian fluids on the 
flow through a porous medium. As a result, a great deal of 
interest has focused on this matter. The flow of non-Newtonian 
displacing fluids of power-law behavior is a topic of great 
interest at this time in oil reservoir engineering, due to the 
possibility of improving the oil recovery efficiency from water 
flooding projects. As the experimental and theoretical evidence 
has shown, certain non-Newtonian displacing fluids, in partic- 
ular pseudoplastic behavior, may minimize the effects which 
tend to destabilize the interface movement separating the 
displacing and displaced fluids. For example, the polymer 
solutions and emulsions of oil in water appear to respond 
favorably to the elimination of viscous fingering effect in oil 
displacement mechanism. In a certain range of shear rate 
variation these fluids are non-Newtonian, having a pseudo- 
plastic behavior, in which the apparent viscosity is a decreasing 
function of increasing shear rate. Therefore, in the flow of these 
fluids through a porous medium we are faced with a problem 
in which the rheological effects on the flow are flow rate 
dependent. The practical and theoretical interest in knowing 
of these effects is quite justified. 

Another class of flows through a porous medium is non- 
Darcy gas flows under high pressure, in which case the 
equations governing unsteady flow are nonlinear. This class of 
flows appears as a result of Darcy's law violation at high 
velocity. In this situation, the nonlinear inertial effects of 
convective accelerations and decelerations due to flow through 
varying cross-sectional areas in the pore space, along with 
compressibility effect, must be considered. 

An efficient approach to deal with the problems mentioned 
above is the finding of self-similar solutions of the equations 
governing non-Newtonian flows of power-law fluids and non- 
Darcy gas. The interest in such solutions appears as a result 
of the fact that the solution of a partial differential equation, 
for example, describing the flow in an oil reservoir, may be 
reduced in certain cases of practical interest to the solution of 

an ordinary differential equation. In this way it could be 
possible, as we will see further on, to obtain an exact solution, 
sometimes even in a closed form, by means of an elementary 
approach. It is always worthwhile to look for self-similar 
solutions before we use a numerical approach to solve the 
nonlinear equations governing unsteady flows through porous 
media. 

A great number of publications have been devoted to the use 
of self-similar solutions in the solving of fluid mechanics 
problems related to the flow through a porous medium. It is 
outside the scope of this study to review these papers here. 
However, it should be pointed out that the publications are 
concerned with Newtonian fluids. As far as the author is aware, 
the case of non-Newtonian fluids of power-law behavior has 
not been presented in the literature. Our objective in this paper 
is to show the existence of self-similar solutions for some 
problems of fluid mechanics of interest at this time in oil 
reservoir engineering. The paper is organized as follows: in the 
first two sections we deal specifically with unsteady flow of 
power-law fluids, showing the existence of self-similar solutions 
for certain boundary conditions occurring in practice. In the 
third section we focus on a more general case which includes 
non-Darcy gas flows as well. 

Unsteady flow of power-law fluids 
One - dimensional problem 
As we previously showed, I the unsteady flow equations for a 
slightly compressible fluid of power-law behavior may be 
written 

- -  ~ P  = ]~ef~f 0 n ( l )  

~x k 

n-  ~P c~v 
-P~P ~ = ~ x  (2) 

where 

k 1 ( n *  y(8k~ "+''/2 
~eff- 2H \ l - ~ n , / \ ~ ]  (3) 
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Notations are shown in the notation given at the beginning of 
the paper. 

In the basic Equation 1, the inertial effects have been 
disregarded. This assumption seems to be reasonably correct 
when we are dealing with the flow of viscous fluids through a 
porous medium. Equation 1 is a modified Darcy's law including 
the rheological effects of power-law fluids. 

As shown by Pascal and Pascal, 2 using the transformation 

~I = x t  -"/~1 + . )  (4) 

which is the self-similar variable for Equations 1 and 2, the 
following system of ordinary differential equations is obtained 

k dp 
v" = - - -  t -"/" +") - -  (5) 

/~=ff dr/ 

and 

--=dr + nfl~p ~lt- 1/c~ +,~ __dP (6) 
dr/ 1 + n d~/ 

From Equations 1, 2, and 4 one obtains 

d2p n2a 2 fdp'~(2.- I)/. 
d~ + l--~n r/~d--~) = 0  (7) 

in which 

a2= ~ (flc~) (8) 

Equation 7 determines the pressure distribution in the flow 
system provided that appropriate boundary conditions on 
function p(~/) are specified. Once p(~) is known, the velocity 
distribution, expressed by the function v(t/), may also be known 
from Equation 5. 

Assuming a flow system of infinite extent, depleted at a 
constant pressure at the outface flow, then for this case the 
appropriate boundary conditions will be 

~/= 0 P = Pw = constant 
(9) 

t l = ~  p=p~=constant and v=O; p~ > p~ 

From a practical point of view, the interest is to determine 
re(t) rather than function v(~/), where re(t)= v(0) represents the 
velocity variation with time at the outface flow, such that a 
constant pressure of production may be maintained there. In 
this case, it is convenient to express the pressure and velocity 
distributions by the following functions: 

P=Pwf(q) (10) 

V=Vo(t)d~(ff) (11) 

Introducing Equations 10 and 11 into Equations 5 and 6, we 
have the system of nonlinear equations for f(t/) and ®(t/): 

\~eff /  Vo(t ) \dr/} 
and 

dO nflckpw tl t -  1/(~ +.~ df  
- - =  -F - -  (13) 
dr/ 1 + n %(0 d~l 

in which, from 9, 10, and 11, the following boundary conditions 
arise 
r/=0 f (0 )= l  and O(0)=I 

(14) 

~/=ov f ( ~ ) = P k  and O(oo)=0 
Pw 

Equations 12 and 13 lead to an equation identical with Equation 
7 in function f(~), provided that an appropriate expression for 
re(t) is found 

d2f n2a 2 /d f~2 . - l ) / .  

dn 2 

while from 12, taking into account that ~ (0)=  1, one obtains 

(kP" y /a t -  ~/" +"'(df ~ '/" (16) 
~o(t)= -~T,,: \T~/.:o 
Previous relations 11, 12 and 13 yield 

Since (df/dtl)~o=cOnstant, then from 12, 13, and 16 it is 
evident that function re(t) is of the form 

' \ ~ e f f /  \dT/ /s=o 

We now turn our attention to the determination of (df/d~/)~o 
occurnng in 18. For this purpose, the solution of Equation 15, 
satisfying conditions specified in 14, is required. Equation 15 
may be integrated twice to yield 

d f = r c  ' na 2 1 - n  2 qn/{1-.) 
dr/ L 2 i~nn ff J (19) 

N o t a t i o n  

F Cross-sectional area 
Go(t ) Cumulative production 
h Oil reservoir thickness 
H Consistency index (coefficient in power-law equation) 
k Permeability 
n Power-law exponent 
p Pressure distribution in the flow system 
Pw Pressure at the outface flow 
Pk Pressure at the initial moment, t = 0 
Qw Volumetric flow rate 
R Radial distance 
Rw Well radius 
t Time 
v Velocity distribution in the flow system 
Vo(t ) Velocity variation in time at the outface flow 

Greek letters 

fl 

/z. 
#eft 

q=pv 
P 
Pk 

Inertial flow resistance coefficient 
Compressibility coefficient for slightly 
compressible fluid 
Porosity 
Density 
Shear rate 
Apparent viscosity for a power-law fluid 
Effective viscosity for a power-law fluid 
flowing through a porous medium 
Mass velocity 
Specific mass 
Specific mass corresponding to the initial 
reservoir pressure, t = 0 
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whereas 

f j [  ha' 1 -n  2 ]'/'I-') f(r/)= 1 + C 1 l+nr/2 dr/ (20) 

For r/ft0 from 19 we have (df/dr/)~/ffi'o=Cl=constant. To 
determine C1 one can use the condition shown in 14; i.e., r/= or, 
if f(ov)--p~/pw, for n>  1. The case n<  1, corresponding to a 
non-Newtonian fluid of pseudoplastic behavior, requires a finite 
interval of variation of the variable r/; i.e., 0< r /< th ,  in the 
formula 20. Therefore, for n < 1, we are led to the formulation 
of a moving boundary problem, in which the location of a time- 
dependent boundary is determined by the relation 4 

l ( t ) f r /x t  ~/(1+") with 171 =constant (21) 

In a previous paper, Pascal and Pascal, 2 we have shown how 
the solution of Equation 15 can be analytically obtained from 
a certain formulation of the moving boundary problem. The 
interested reader is referred to Pascal and Pascal 2 for more 
detailed coverage of this subject. 

As given in Pascal and Pascal, 2 solutions of the nonlinear 
Equations 1 and 2 for n < 1 are expressed as 

P(r/)-pw=Ba/(1-n)r/(ll+n)/(1-n)J"(~) ; 0 <  r /<1  r/l (22) 

and 

/ k \ ' / "  r / X2 ~]1/(1-n)  
v(x,t)=(--) t-l/"+'|ein~ t2.~+.i}_ 1__ (23) 
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Figure 1 Rheological effect on the function J, (q/rh) for various n 
values, one-dimensional flow 
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in which 

q x 

and 

r - A n - I (  1 - n)/( 1 4- n) 
= B -"/o +")I r l  . na 2 l--n 

r/1 LVJ ' B = T  
(24) 

J , ( ~ )  = f]/~'  (1 - ¢2)"/" - ' )  d~; Ap = p~ - Pw (25) 

with Ln=J,(1)  and l(t) given by the relation 21. Once I(t) is 
determined from 21, the depression front velocity v may also 
be determined from relation 

dl n 
V -  - rh t -  1(1 +.) (26) 

dt 1 +n  

where r h is obtained from 24, and V is the depression front 
velocity. 

The integral 25 in Equation 22 cannot be evaluated analytically 
but may easily be evaluated numerically using for this purpose 
a standard quadrature procedure. Figure 1 shows the results 
obtained by means of the numerical integration from which the 
values of J , (1)=L, ,  Le., at r//r/i--1 may be determined. 

The solutions given by relations 22 and 23, expressing the 
pressure and velocity distributions in the flow system, have the 
merit of simplicity and the numerical results may easily be 
known from Figure 1. 

At x = 0 relation 23 gives 

/ k \I/. 
Vo(t)--I I B1/(1-n)r/2/(1-n)t-1/(l+n) 

- \/-~---ff/ 

so that, from a comparison with 18, it turns out 

(27) 

/ k \I/n 
A = { - - }  Bl/Cl-n)r/~/(' -", 

\[~eff/ 
(28) 

in which B and r/l are determined from 24. 
In order to express r/l in terms of df/dr/l,= o, one can use the 

following approach. Assuming an average pressure in the zone 
0 < x < I(t), i.e., an average density, then taking into account 18, 
one can write 

Go(t)= ~F fo  v°(T) d r -~F(1  n + n)A t,/o +,) (29) 

On the other hand, one can also write 

Go(t ) = F~l(t) (30) 

and consequently from 29 and 30 we obtain an expression for 
the front location in function of time: 

l(t)= (1 + n)A t./( 1 +.) (31) 
n 

From relations 16 and 31, r/1 may be finally related to df/dv/I,= o 
by the expression 

r / l =  n \flcff/ \dr//,=o (32) 

or 

l+n 
v/1 = A = constant (33) 
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Obviously, 32 represents an approximate relation derived from 
an approach in which the compressibility effect in the zone of 
elastic decompression, i.e., 0<  x<l(t), has been ignored. To 
consider this effect, we should use instead of 30, 

~i  (1) 
Go(t)=oF [p(x, t)--pk] dx (34) 

For a slightly compressible fluid, the specific mass is related to 
pressure 

p = p~ep<~- pk) ___ p~[ 1 + r (  p - pk )] (35) 

where p~ is a reference pressure for which p = Pk. Equation 35 
was also used in deriving the flow equations 1 and 2. 

Introducing 35 into 34, we have 

f l  It) Go(t) = OPk~F [ p(x, t)- pd dx (36) 

This relation dearly shows that the determination of r/x requires 
knowledge of pressure distribution p(x, t) in the zone 0 < x < l(t), 
which is the solution of Equation 7. As already mentioned, this 
solution requires for n < 1 a formulation of a moving boundary 
problem, as presented and discussed in Pascal and Pascal. 2 As 
one can see from the results shown above, the theoretical 
evidence to support the existence of a decompression front, dtie 
to the elastic decompression of a slightly compressible fluid of 
pseudoplastic type and its location at any time, is physically 
demonstrated. With no loss of generality, we will illustrate 
further on the existence of self-similar solutions for the case of 
a dilatant fluid, i.e., n > 1. This case may be analyzed without 
having to consider the formulation of a moving boundary 
problem, as required for n < 1, i.e., a pseudoplastic fluid. For 
example, for n=2,  Equations 12 and 13 become 

*(r/) = - \~----,ff,/ v - ~  \d-q~J (37) 

and 

d~ fldppw r/t-2/a d f  
- + (38) 

dr/ 3 %(0 dr/ 

where vo(t) is, according to the relation 18, vo(t)=At -2/3. 
Equations 37 and 38 lead to 

de  _ b2r/¢2 = 0; b 2 - flt~fleffA (39) 
dr/ 3k 

From 20 when n = 2 we have 

~ dr/ 0 < < oo (40) 
.f(r/) = 1 + (C 1 + a2r/213)2' 

r/ 

Therefore, the functions f(r/) and @(q), satisfying the boundary 
conditions specified in 14, can now be obtained from 39 and 
40 and expressed as 

f(r/) = P(r/)= 1 4 r~ 
Pw 2CI(CI + a2r/2/3) 

and 

1 
+ arctg/  / - - -  r/ 

2c,  \W 3c, 

v(n) 1 
e,~(r/ ) = - _ _  

Vo(t ) l +b2r/2/2 

with Cl determined from condition f(~)=P~/Pw 

(41) 

(42) 

c, :? ' ,  '+ "- 1 :'' (43) 
L 4a p~-pwl 

From 42 the velocity distribution will be 

At-2/3 
v(x,  t ) =  (44) 

b 2 
1 +- -  x2t -+/a 

2 

Naturally, we now ask if the self-similar solutions of Equations 
1 and 2 could also be found for the case of a constant velocity 
at the outface flow. Specifically, we are interested in knowing 
the pressure variation in time at the outface flow when a 
constant velocity is imposed there• In this situation functions 
p(r/) and v(r/) should be related to f(t/) and ~(r/) by the relations 

P = Pk + (Pw(t)- Pk)f(r/) (45) 

V = Vo~(r/); VO = constant (46) 

As a result, the following boundary conditions arise 

r/=0 f (0)= 1 and ¢(0)=  1 (47) 

r /=~ f(oo)=O and ~(oo)=0 (48) 

It is straightforward to show that Equations 1 and 2 become 

tl:= k(p'(t)--Pk)t-"~x+"'( d f ) / £ = f r v ~  ~ (49) 

and 

de  nfl(a(pw(t)- pk)r/t- l/H +,) 
- - ~ J r  
dr/ , (1 +n)vo 

× [ d f  l +n t f(r /)d( ln(p.(t)-pt)!  1 (50) 
Ldr/ n r/ dt J 

From 49 and 50 it is evident that an analytical expression for 
the function pw(t) does not exist, such that these equations 
can be expressed in terms of variable r/only. Consequently, the 
case corresponding to the boundary conditions 47 and 48 is 
not self-similar. 

Plane radial f low 

In this section we are concerned with the case of plane radial 
flow. Of particular interest, as we will see immediately, is the 
sensitivity of this case to the coupled effects specifically associated 
with the flow geometry and non-Newtonian behavior. For 
example, assuming a radial steady flow of an incompressible 
fluid then we have 

Q .  
• Qw = constant (51) 

v = 2nhR' 

On the other hand, for a power-law fluid the apparent viscosity 
/Z.p is given by the relation 

#,p = H(~)"- 1 (52) 

where ~ is expressed in terms of flow velocity in porous medium 

3n+ 1 v 
= (53) 

Previous relations 51, 52, and 53 reveal that 
(Rk'-" 

#x = #,l, w t ~ )  (54) 

in which #w is the viscosity corresponding to Rw, i.e., at the wall. 
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It is evident from 51 that for a power-law fluid of pseudoplastic 
behavior, i.e., n< 1, the apparent viscosity is a monotonic 
increasing function of inueasing radial distance. As a result, 
the rheological effects of non-Newtonian behavior on the radial 
flow in a porous medium will become more significant with 
increasing radial distance. This relevant result appears naturally 
as a consequence of coupled effects depending on the flow 
geometry and due to the fact that the apparent viscosity of a 
non-Newtonian fluid is flow rate dependent. As a result, the 
case of radial flow appears to be of great interest in oil reservoir 
engineering, showing implications of relation 54 on the flow 
behavior. Specitlcally, we have here a situation arising from 
relation 54, in which an unsteady flow of a slightly compressible 
fluid having a variable viscosity with radial distance is involved. 

For a plane radial flow, Equations 1 and 2 become 

where 

A(t)= df 0 
l/n 

drl m=flw 

In determining the function A(t) we are again faced with an 
identical problem as in the one-dimensional case. However, as 
we will see further on, the radial case is more difficult because 
A, taking into account 64, is no longer a constant as in the 
one-dimensional flow. Considering n < 1, the &termination of 
(dfldq)& also requires an approach based on the formulation 
of a mo&g boundary problem. As shown in Pascal and 
Pascal,’ using this approach Equation 62 is reduced to 

(67) 

ap _ kf “” 

aR k 

+#J$$+; 

These equations lead to 

(55) subject to the boundary conditions 63. 
Taking into account that sz-” may be neglected as compared 

then from 67 it turns out 
(56) 

with q:-“, 

df I’” 
A(t)= - 

0 dtl ,,=Itw= 

(57) 

(68) 
Once A(r) is determined from 68, relation 65 may now be 
expressed as 

It is convenient to introduce the transformation 

,,=Rt-“/(I+“) (58) 

and functions f(q) and m(q) defined as 

P=Pwf(rl) 

u = dt)@(tt) 
(59) 

Using relations 58 and 59, Equations 55 and 56 may be written 
as 

and 

(W 

(61) 

On the other hand, from Equations 57, 58, and 59, we have 

d2f n df nu2 df (2n-1)‘n 
--+__-+_~ - 

0 
=O 

dq2 qdq l+n drl 
(62) 

The boundary conditions associated with the above equations 
are 

fW= 1 ,d f(co)=k 
PW 

uo(~)=Bp’v(“+‘) (69) 

which shows that maintaining a constant pressure at the outface 
flow, the velocity must decline in time according to relation 69. 
B is a constant obtained from 65 and 68, while the relations 
determining ql are available in Pascal and Pascal2 and therefore 
are not repeated here. However, we give here the expression 
for the pressure distribution 

p(q)=p,-&\1:’ +“)/(l _“)J” : 0 ) %v-=l<tll (70) 

where 

(71) 

The integral 71 has been numerically performed and its values 
are presented in Figure 2. Once ql is determined, the front 
location I(t) at a given time may be predicted by means of 
relation 58 and expressed as 

I(t)=f),r”/“+“) (72) 

As previous results indicate, the case when the well is producing 
at a constant pressure allows the self-similar solutions for 
Equations 55 and 56, provided that the fluid velocity u,(t) will 
decline there according to the relation 69. It is straightforward 
to show that these solutions no longer exist for a constant flow 
rate of production. 

cP(q,)=l and @(co)=0 

in which qW is determined from 58 and expressed as 

VW=R,t-“/(l+“) Self-similar solutions of the equations 
governing unsteady gas flow 

R, being the well radius. 
Following the same approach as in the one-dimensional case, 

we will derive the conditions for which the self-similar solutions 
for Equations 55 and 56 exist. For example, from 63 one has 
@(q,)= 1, so from 60 one obtains 

i/n 
r- i/(l+I)A(r) (65) 

In previous sections we have shown the existence of self-similar 
solutions of the equations governing unsteady flow of non- 
Newtonian fluids for a class of fluid mechanics problems of 
practical interest in oil reservoir engineering. Another class of 
problems arising currently in practice is related to the unsteady 
gas flow through a porous medium. While the non-Newtonian 
fluids of power law behavior, investigated previously, may be 
considered slightly compressible fluids, in which case the 
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Figure 2 Rheological effect on the function J .  (~//rh) for various 
n values, radial f low 

relation 35 is valid, in the case of gas flow under high pressure 
this assumption is no longer valid. 

Assuming an isothermal flow, i.e., at a constant temperature, 
instead of 35, one has 

1 
p=bp;  b -  _ (73) 

Z R T  

in which Z is the compressibility factor expressed at average 
pressure. 

The violation of Darcy's law for a relatively high velocity, 
particularly in the case of gas flow, has been reported in the 
literature for a long time. As the gas velocity in the pore space 
increases above a certain value, the linear relationship between 
the pressure gradient and velocity, inherent in Darcy's law, is 
no longer valid. The observed departure from Darcy's law was 
found to be directly related to the significance of the effects of 
convective accelerations and decelerations of the gas through 
varying cross-sectional areas in the pore space. Specifically, the 
nonlinear inertial term v(av/ax) was found to be directly 
responsible for the deviation from Darcy's law. As is well 
known, for a low velocity or a low Reynold's number, the 
viscous forces are significant, while for high velocity the inertial 
forces will dominate. 

To include the inertial effects associated with the nonlinear 
term v(av/ax) in the motion equation, an appropriate relation- 
ship between the pressure gradient and velocity should be used. 
Such a relation, experimentally found and theoretically justified, 
is expressed as 

_ ap = -  v + ~rpv2 (74) 
ax k 

where p is the specific mass; i.e., P=Y/g, Y being the density; 
and ~r is an empirical coefficient or fitting parameter, termed 
as inertial flow resistance codficient. The numerkad values of 
~r in terms of permeability and porosity are available in the 
literature. 

It  is convenient to introduce the notation q-- pv, termed mass 
velocity, in which case from 73 and 74, one obtains 

b ap 2 =l~ q+~q2 (75) 
2 ax k 

Experimental ob~rvatioas show, however, that at high velocity, 
occurriag in some problems of practical interest in the gas 
industry, the linear term Oz/k)q related to the Darcy flow may 
be in general neglected in 75. In this section we are particularly 
interested in non-Darcy flow which is adequately described by 
the equations 

b t;3p 2 _- ~rq2 (76) 
2 ax 

and 

_ a t / =  b~b ap ( 7 7 )  
~x at 

To make the problem as general as possible, we will write 
Equations 76 and 77 

ap" 2 _  (78) =g#q 

and 
aq 

= b• ~ (79) 
ax 0t 

Power-law exponent n in 78 does not have the same meaning 
as in the case of non-Newtonian power law fluid. According 
to the experimental observations we may have n = 1 or n = 2, 
while m must be equal to 2. 

For the particular case m=2  and n=2,  we have the non- 
Darcy flow governed by Equations 76 and 77, while for m = 2 
and n = 1 we have a Darcy flow in which ~r= #/k. To show the 
existence of self-similar solutions for the system of nonlinear 
Equations 78 and 79, we will consider the case of constant mass 
velocity at the outface flow, using the expressions 

P = Pk + Ap(t)f(tl); Ap(t) = pw(t)-- Pk 
(8o) 

q = qoO(~/);  qo -- constant 

in which the self-similar variable ~/for Equations 78 and 79 is 
now defined as 

~l= xt  -re(l+') (81) 

rather than by relation 4. 
Equations 80 and 81 allow us to express the system 78 and 

79 in terms of unknown functions f(t/) and O(P/) 

1(df'~ 2m[~t - m/( l + m) A p( t )( pk + Apf  )~ - (82) 
t]~(~l) = bq[ \ dn) 

and 
dO mb~ - -  = -~ - -  Ap(t)qt- 1/(1 +m) 
dt 1 (1 + m)qo 

x F d f  m + l f ( t l )  t 1 dAp(t)l (83) 
Ldr/ m t/Ap(t) ~-  J 

Equations 82 and 83 are subject to the following boundary 
conditions: 
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~/=0 f ( 0 ) =  1 and ~ ( 0 ) =  1 
(84) 

~/=oo f (oo )=0  and ~(oo)=0  

Since f(0) = 1, then from 83 we have at ff = 0 

dAp(t)f q° At"/'l +"; A fd~l (85) 
dt b~ ,=o 

where it turns out that Ap(t) should be expressed as 

(1 +m)q° ( d ~ )  
= constant Ap(t)=Ctt/"+'~; C =  6~b ~=o 

(86) 
Considering 86. Equations 82 and 83 could be expressed iw 

~ o t "  ~=xiable t/only, provided that the approximation 

Pk + Apf~ Apf (87) 

is satisfied. However, from 80 we have 0 < f < l ,  so that 
condition 87 could not be met in some situations of practical 
interest, except the case when the initial pressure, i.e., the 
pressure at t =0,  is Pk = 0. Naturally, this case is more appro- 
priate to the situation when a fluid is injected into reservoir 
having p~ ~ 0. 

Assuming that 87 is a valid approximation, then, taking into 
account 86, we may rewrite Equations 82 and 83 as follows: 

q[/'(~l) = - 2m~C f,,_ 1 df (88) 
bq~o d~l 

and 

dO_mbdpC ( ~  l f )  
d~/ 1 + m  ~/ m- (89) 

These equations lead to 

d[-otf'-'dfl'/"-bOC(rnrl~-~-f) (90) 
dr/J 1 + m 

where 

2m[~C 
~ = - -  (91) bq[ 
It is evident that the determining of f0/) and O0/), satisfying 
the conditions specified in 84, will require the use of an 
appropriate numerical approach. 

As already mentioned, the cases of special interest in some 
practical applications, which we will analyze further on, are 
m = 2 and n = 2, as well as m = 2 and n = 1. 

For a non-Darcy flow, i.e., m = 2  and n=2,  Equations 88, 
89, and 90 become 

• 2 = - ~tf d f  (92) 
d" 

dO-bdpC (2tl ~ - f  3 (93) 

d f  f d ~t d f  1/~ tabdpC(2~l-~- ) = ~  [ . .'f ~-~ff] ~94) 

while for Darcy flow, i.e., ra = 2 and n = I, instead of 92 and 
94, we have 

• = -- off ~ (95) 
m/ 

and 

d [ f ~ f ~ ]  (96) 
3 

Solutions of equations governinffunsteady flow: H. Pascal 

I t  is straightforward to show that the transformation 

f(t/, = e x p ( - 2  ; ~  u '  dr/) (97, 

yields from 94 the Abell,s equation 

dU--2u3 +46uZrl-6=O; 6= bdpC (98) 
dr/ 3x/~ = 

which, obviously, requires a numerical integration to determine 
f(r/). 

On the other hand. an approximate analytical solution for 
the system of nonlinear equations 88 and 89 could be determined 
by means oft-he perturbation method. In this case. the functions 
f(~.).and :~0t) shauid be expressed =~s a , $ N s ~ r ~ e i ~ t l l m ~ m ~  
in terms of a small parameter e. 

Finally, we will now consider the situation- when at the 
outface a constant pressure is imposed. We are particularly 
interested in knowing the qualitative behavior of the velocity 
in time at the outface flow, in order to maintain a constant 
pressure there. For this case the relations 10 and 11, as well as 
the boundary conditions specified in Equation 14, are valid. 
However, instead of transformation 81, used for a constant 
velocity, we must use for the case of constant pressure the 
following transformation 

r/= x t - "/~ 1 +.~ (99) 

Introducing 99 into 78 and 79 and considering 10 and 11 one 
obtains 

0"- bp~t-"/" +"~ df  = 
2# o(t) o,1 (lOO) 

and 

dO nbdpPw i~t- 1(1 +a) d f  (101) 

These equations indicate that a self-similar solution exists 
provided that 

qo(t)=Ct-m+'); C=[ 2[J df" 1 TM bp'~ -~ ,=oJ (102) 

An expected result is that Equation 102 is similar to 18. except 
for the coefficient C which in this case requires the knowledge 
of df=/dt/I,=o, in which function f(r/) is the solution of the 
equation 

d [- df'-I TM Of b2 = nd~ 

(103) 
obtained from Equations 100, 101, and 102. 

C o n c l u d i n g  r e m a r k s  

In this investigation we have shown the conditions for which 
the self-similar solutions of the equations governing unsteady 
flow of non-Newtonian fluids of power-law behavior exist. For 
example, these solutions exist when at the outface flow we have 
a constant pressure, while for a constant flow rate imposed 
there the self-similar solutions no longer exist. The self-similar 
solutions corresponding to a constant pressure yield a qualitative 
analytical expression for the flow rate variation in time. 

However, to determine completely the flow rate variation in 
time, we must integrate the nonlinear differential equation 15 
to know df/d~/[.=o, as can be seen from 16. 
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Solutions of equations governing unsteady flow: H. Pascal 

Limitations of the self-similar so lu t~ns  may appear in some 
cases of practical interest. For  example, in the case of a constant  
flow rate at the outface flow for a non-Newtonian power law 
fluid a self-similar solution does not  exist, while this case for 
non-Darcy gas flow allows a self-similar solution. 
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